On linear functional equations modulo $${\mathbb {Z}}$$
نویسندگان
چکیده
Abstract In this paper, we consider the condition $$\sum _{i=0}^{n+1}\varphi _i(r_ix+q_iy)\in {\mathbb {Z}}$$ ∑i=0n+1φi(rix+qiy)∈Z for real valued functions defined on a linear space V . We derive necessary and sufficient conditions satisfying to be decent in following sense: there exist $$f_i:V\rightarrow {R}}$$ xmlns:mml="http://www.w3.org/1998/Math/MathML">fi:V→R , $$g_i:V\rightarrow xmlns:mml="http://www.w3.org/1998/Math/MathML">gi:V→Z such that $$\varphi _i=f_i+g_i$$ xmlns:mml="http://www.w3.org/1998/Math/MathML">φi=fi+gi $$(i=0,\dots ,n+1)$$ xmlns:mml="http://www.w3.org/1998/Math/MathML">(i=0,⋯,n+1) _{i=0}^{n+1}f_i(r_ix+q_iy)=0$$ xmlns:mml="http://www.w3.org/1998/Math/MathML">∑i=0n+1fi(rix+qiy)=0 all $$x, y\in V$$ xmlns:mml="http://www.w3.org/1998/Math/MathML">x,y∈V
منابع مشابه
$\mathbb{Z}_{q}(\mathbb{Z}_{q}+u\mathbb{Z}_{q})$-Linear Skew Constacyclic Codes
In this paper, we study skew constacyclic codes over the ring ZqR where R = Zq + uZq, q = p s for a prime p and u2 = 0. We give the definition of these codes as subsets of the ring ZqR . Some structural properties of the skew polynomial ring R[x, θ] are discussed, where θ is an automorphism of R. We describe the generator polynomials of skew constacyclic codes over R and ZqR. Using Gray images ...
متن کاملSome Results on Linear Codes over $\mathbb{Z}_4+v\mathbb{Z}_4$
In this paper, we study the linear codes over the commutative ring R = Z4 + vZ4, where v2 = v. We define the Gray weight of the elements of R and give a Gray map from Rn to Z2n 4 , which lead to the MacWillams identity of the linear code over R. Some useful results on self-dual code over R are given. Furthermore, the relationship between some complex unimodular lattices and Hermitian self-dual ...
متن کاملOn Some Classes of $\mathbb{Z}_{2}\mathbb{Z}_{4}-$Linear Codes and their Covering Radius
In this paper we define Z2Z4−Simplex and MacDonald Codes of type α and β and we give the covering radius of these codes.
متن کاملOn polynomial approximations over $\mathbb{Z}/2^k\mathbb{Z}$
We study approximation of Boolean functions by low-degree polynomials over the ring Z/2kZ. More precisely, given a Boolean function F : {0, 1}n → {0, 1}, define its k-lift to be Fk : {0, 1}n → {0, 2k−1} by Fk(x) = 2k−F(x) (mod 2k). We consider the fractional agreement (which we refer to as γd,k(F)) of Fk with degree d polynomials from Z/2 Z[x1, . . . , xn]. Our results are the following: • Incr...
متن کاملSome results of linear codes over the ring $\mathbb{Z}_4+u\mathbb{Z}_4+v\mathbb{Z}_4+uv\mathbb{Z}_4$
Abstract: In this paper, we mainly study the theory of linear codes over the ring R = Z4 + uZ4 + vZ4 + uvZ4. By the Chinese Remainder Theorem, we have R is isomorphic to the direct sum of four rings Z4. We define a Gray map Φ from R n to Z 4 , which is a distance preserving map. The Gray image of a cyclic code over R is a linear code over Z4. Furthermore, we study the MacWilliams identities of ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Aequationes Mathematicae
سال: 2021
ISSN: ['0001-9054', '1420-8903']
DOI: https://doi.org/10.1007/s00010-021-00854-2